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Objectives
● To help you to take a deeper, different look into 
“well known” basic concepts

● To allow MikroTik equipment do more

● Encourage not only to update RouterOS version 
but also update existing configurations to use the 
latest features

● Reduce the amount of throughput related emails 
to support@mikrotik.com! 

mailto:support@mikrotik.com
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What is throughput?

● Throughput is a measure of how many units of 
information a system can process, in a given 
amount of time

● In data transmission, network throughput is the 
amount of data transferred successfully from 
one place to another in a given time period and 
typically measured in bits per second (bps)
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Router throughput

● Successfully transferred data through the router 
is equal to sum of all data that is leaving the router 
(not dropped in the router)
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Maximum router throughput
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Link or wire speed
● Link or Wire speed refers to the rate of data 

transfer a given telecommunication technology 
provides at the physical wire level
– Ethernet  - 

10Mbps/100Mbps/1Gbps/2.5Gbps/5Gbps/10Gbps
– SFP – 1Gbps
– SFP+ - 10Gbps
– SFP28  - 25Gbps
– QSFP+ - 40Gbps
– QSFP28 - 100Gbps
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Wire-speed

● Wire-speed, as an adjective, describes any 
hardware or function that supports data transfer 
rate without slowing it down

● Functions embedded in microchips (ASIC) are 
more likely to run at wire speed than functions 
that are implemented in software

● Currently in MikroTik hardware all devices with 
a switch chip are capable of transferring data at 
wire-speed while using an impressive set of 
features
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Wireless ”wire speed”
(Data rates)

● Maximum theoretical wireless speed is 
determined by wireless protocol, number of 
streams, modulation and channel width
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802.11ad Data rates
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Marketing numbers
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Capacity
● Network device capacity is a measure of the 

device structure’s bandwidth
– Example: RBwAPG-5HacT2HnD – has a structure 

of one Gigabit Ethernet and one triple stream 
802.11ac wireless and one dual stream 802.11n 
wireless 
 

1.3G + 0.3G +1G * 2 (for duplex) = 4.6Gbps
– Example: CRS309-1G-8S+IN – has a structure of  

one Gigabit Ethernet and 8x 10Gbps SFP+ ports

(8x10G + 1x1G) * 2 (for duplex) = 162Gbps
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Layer1 wire-speed vs. 
Layer2 wire-speed
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OSI Layer1
● Ethernet is a self-clocked digital protocol. The clock is 

synchronized from preamble field that provides a 
predictable 7 bytes long signal for Ethernet receiver, 
followed by 1 byte Start-of-Frame Delimiter

● Ethernet specifies minimum idle period between 
transmission of Ethernet frames known as the 
interframe gap – the time it takes to send 12 bytes
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OSI Layers and wire-speed
● TCP ACK packet without any options takes

– 40B as Layer3 packet (padded to 46B to reach minimal 
Ethernet payload size)

– 46+18 = 64B as Layer2 frame 
– 64+20 = 84B as Layer1 signal on the wire
– 40/84 = 47.62% IP transmission efficiency
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OSI Layers and wire-speed
● UDP (and TCP) data packet takes 

– 1500B as Layer3 packet
– 1500+18 = 1518B as Layer2 frame (1514B in Wireshark)

– 1518+20 = 1538B as Layer1 signal on the wire
– 1500/1538 = 97.53% IP transmission efficiency



  16

My wire-speed

● 500GiB/522’288’426 =1028B 
as Layer3 packet

● 1028+18 = 1046B as Layer2 
frame (1042B in Wireshark)

● 1046+20 = 1066B as Layer1 
signal on the wire

● 1028/1066= 96.43% 
IP transmission efficiency

Note:  1 GiB = 1024³ B
1 GB = 1000³ B
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Tricky questions about throughput

● What is 1Gbps really? Is it the same as 
1Mb/ms for 1000ms? Is it the same as 1b/µs 
for 1 million microsecond?

● Are there any differences between Fast 
Ethernet and Gigabit Ethernet if you limit it to 
60Mbps?

● Why can I get 22Mbps in my speedtest.net 
results if I have queue set to 20Mbps?
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Lets scale up

● Ethernet networks in many ways is very similar 
to highway system
– Lets replace Ethernet with highways
– Lets replace Ethernet frames with cars/trucks
– Lets replace Frame sizes with engine size
– Lets replace Queues with tunnels
– Lets replace Queues size with traffic jam size
– Lets replace seconds, with hours
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Tunnel specifications

● Tunnel have limited 
ventilation

● It can handle 3600L/h 
(engine displacement 
Liters per hour)

● How would you control 
that?

● 3600L/h = 60L/min
60L/min = 1L/s,
right?
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 Limitations of scaling

● What happens when truck arrives with a 12L 
engine? 

● So we can’t scale down to 1L/s, we need to 
cope with inherit burstiness caused by 
randomness of engine sizes

● Lets go with 60L/min 
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Limitations of scaling
● What happens when for 2 minutes there are no 

cars, and then row of cars with worth of 150L 
arrive that were stuck behind lorry?

– Should all 150L be allowed to pass based on 
previous 2 minutes?

– Should 120L be allowed to pass based on previous 
1 minute? (and 30L queued)

– Should only 60L be allowed to pass based on only 
this minute? (and 90L queued)
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Where does the measurement 
start?
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Waiting time

● So we can’t scale down to 60L/min ether!
● We can’t go just with 3600L/h ether, a car that 

will arrive with 3601st liter, will have to wait till 
the end of the hour, so that next 3600L are 
available.

● And again.. where that hour started exactly?

● Conclusion: Traffic is too chaotic and 
unpredictable to apply any type of scaling 
directly.
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Solution - Tokens
● We can place toll booth 

before the tunnel it will
– generate tokens at any 

given scale, even ms
– It will be able to 

accumulate limited 
number of tokens as a 
buffer

– Cars will have to get 
tokens to pass

– Buffer size should be taken into account when 
when token rate is specified, to stay below limit 
at any given time period
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HTB Algorithm
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“Real” network speed
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How does speedtest.net work

● speedtest.net will use up to four HTTP threads
● After the pre-test, if the connection speed is at least 4 

megabits per second then speedtest.net will use four 
threads. Otherwise, it will default to two

● One side sends an initial chunk of data, the 
other side calculates the real-time speed of the 
transfers and adjusts the chunk size along with 
buffer size

● All samples are sorted by speed. The two fastest 
results are removed and the bottom 1/4 which is then 
left. Everything else is then averaged to get the result 

*https://support.speedtest.net/hc/en-us/articles/203845400-How-does-
the-test-itself-work-How-is-the-result-calculated-
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TCP theoretical throughput

TCP throughput is limited by two windows
– Congestion window - sender side

● the amount of unacknowledged packets that may be 
in transit 

● it auto-tunes based on congestion control algorithms
● impacted by packet loss and delays 

– Receive window  - receiver side
● the amount of received data not processed yet by the 

application
● it auto-tunes based or receive buffer size and its level 

of fullness
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TCP theoretical throughput

● Sender and receiver continuously negotiate 
common transmission window (for both 
directions) 

● Maximal single TCP stream throughput is 
limited to not more than one full transmission 
window within one round-trip time (RTT) period

● Middle devices, like routers, have only indirect 
impact on congestion algorithm used - by 
impacting RTT, jitter, packet loss 
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TCP theoretical throughput

● If window size is 4`225`024 bytes, and RTT is 60ms 
– (4`225`024*8)/60 = 563`336 bits/ms = 563Mbps

● If window size is 18`944 bytes, and RTT is 6ms 

– (18`944*8)/6 = 25`259 bits/ms = 25,26Mbps  
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TCP and multi-threading
● Multi-threading introduces out-of-order packets
● Usually TCP can handle out-of-order packets 

within a single transmission window
● Depending on the congestion algorithm used, 

out-of-order packets might be considered as 
loss and introduce delays (increase calculated 
RTT)
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Single TCP stream 
and multi-threading
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Flow/Packet steering

● RouterOS uses Receive Flow/Packet steering 
to assign incoming traffic to a specific CPU 
core/thread, based on the hash value 

● The hashing process can be:
– Hard-coded in the hardware
– Configurable in the hardware
– Implemented in the interface driver 

● Receive flow/packet steering will try to keep 
single TCP stream bound to single CPU 
core/thread as long as possible
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RB3011UiAS block diagram
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What can and can’t we do...?

– We can’t choose the congestion control algorithm
– We can’t determine the congestion and the receive 

window size of the endpoints
● We can change MSS
● We can minimize impact on RTT by reducing 

packet processing time
● We can impact packet loss 
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Routing forwarding
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Routing forwarding
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Routing forwarding
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Initial FastPath implementation

● FastPath is an interface driver extension, that 
allows you to receive/process/send traffic 
without unnecessary processing

● Interface driver can now talk directly to specific 
RouterOS facilities - skipping others

● FastPath requirements
– Interface driver support
– FastPath should be allowed in configuration
– No configuration in specific facilities
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Routing forwarding FastPath

NO
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Routing forwarding FastPath

NO
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FastPath + Conntrack

● Implemented as “fasttrack-connection” action 
for firewall filter/mangle that adds “Fasttracked” 
flag to connection

● Packets from “Fasttracked” connections are 
allowed to travel in FastPath

● Works only with IPv4/TCP and IPv4/UDP
● Some packets will still follow the regular path to 

maintain timeouts in conntrack entries
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FastPath + Conntrack = FastTrack
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Routing forwarding FastPath

YES
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Fasttrack-connection
● “fasttrack-connection” action works similar to 

“mark-connection” action
● “fasttrack-connection” rule is usually followed by 

identical “accept” rule
● Most common Fasttrack implementations:

– Fasttrack if connection reach connection-
state=established and related 

– Fasttrack to exclude some specific connections 
from the queues

– Fasttrack all local connections
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Without Fasttrack
● Board: 

RB2011UiAS-2HnD

● Configuration:
default Home AP

● Single TCP connection 
throughput: 358Mbps

● CPU load:
100%

● Firewall CPU load:
44%
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With Fasttrack
● Board: 

RB2011UiAS-2HnD

● Configuration:
default Home AP

● Single TCP connection 
throughput: 890Mbps

● CPU load:
86%

● Firewall CPU load:
6%
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Full queues and 
multi-core processing

● Packets are spending most part of the 
processing time waiting in full queues

● In order not to waste CPU core cycles on 
waiting, current core will just leave the packets 
in the queue and take already processed 
packets out of the same queue

● Queued packets can be taken out of the queue 
randomly by the CPU core, that works on that 
queue at the time

● In short: full queues can shuffle packet 
assignments to CPU cores
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Empty queues and 
multi-core processing

● In order not to waste CPU core cycles on 
waiting, current core will just leave packets in 
the queue and take already processed packets 
out of the same queue

● In the case when the queue limit is not reached, 
same packets will be left in and taken out of the 
queue by the same CPU core, making this 
process seamless  
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Conclusions

● Queues don’t slow down single TCP streams if 
they are not actually queuing packets (limits are 
not reached)

● The complexity of the configuration has a 
minimal impact on a single TCP stream (with 
the exception of deep packet inspection and 
queues), if the CPU core/thread doesn’t reach 
100%

● Use configuration features like fastpath, 
fasttrack, ip firewall raw, etc. to reduce overall 
CPU load
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Testing from router to router

● Traffic generation/elimination takes at least the 
same amount of CPU resources as simple 
traffic forwarding

● The router needs to do both generate traffic and 
then forward it to destination

● By default the traffic forwarding process has the 
highest priority in routers (the reason why ping 
through the router is better than to the router) 
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Traffic-generator tool

● Traffic Generator can:
– Determine transfer rates, packet loss
– Detect out-of-order packets
– Collect latency and jitter values
– Inject and replay *.pcap file

● “Quick” mode
● Full Winbox support (coming soon) 
● Doesn’t have TCP protocol support
● Scares people 
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Bandwidth-test tool

● People love it!!!
● Until v6.44 was single threaded, now both UDP 

and TCP tests support multi-threading
● In v6.44 we added warning message when 

CPU load exceeds 90% (CLI only), to inform 
that CPU is bottlenecking results, not the link

● Can do multistream tests (but how many should 
you do?)
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Speed-test tool

● Introduced in RouterOS v6.44 (CLI only)
● It is a simple test tool for measuring ping, jitter, 

TCP and UDP throughput from one MikroTik 
device, to another

● It is based on bandwidth-test and ping tool, to 
use it – the bandwidth-test server needs to be 
accessible

● It automatically determines optimal number of 
test streams based on the CPU core/thread 
count on both devices   
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Speed-test tool
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Questions!!!
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