

Understanding throughput

OR

Common misconceptions on what is
’real’ device throughput

MUM, USA 2019

 2

Objectives
● To help you to take a deeper, different look into
“well known” basic concepts

● To allow MikroTik equipment do more

● Encourage not only to update RouterOS version
but also update existing configurations to use the
latest features

● Reduce the amount of throughput related emails
to support@mikrotik.com!

mailto:support@mikrotik.com

 3

What is throughput?

● Throughput is a measure of how many units of
information a system can process, in a given
amount of time

● In data transmission, network throughput is the
amount of data transferred successfully from
one place to another in a given time period and
typically measured in bits per second (bps)

 4

Router throughput

● Successfully transferred data through the router
is equal to sum of all data that is leaving the router
(not dropped in the router)

 5

Maximum router throughput

 6

Link or wire speed
● Link or Wire speed refers to the rate of data

transfer a given telecommunication technology
provides at the physical wire level
– Ethernet -

10Mbps/100Mbps/1Gbps/2.5Gbps/5Gbps/10Gbps
– SFP – 1Gbps
– SFP+ - 10Gbps
– SFP28 - 25Gbps
– QSFP+ - 40Gbps
– QSFP28 - 100Gbps

 7

Wire-speed

● Wire-speed, as an adjective, describes any
hardware or function that supports data transfer
rate without slowing it down

● Functions embedded in microchips (ASIC) are
more likely to run at wire speed than functions
that are implemented in software

● Currently in MikroTik hardware all devices with
a switch chip are capable of transferring data at
wire-speed while using an impressive set of
features

 8

Wireless ”wire speed”
(Data rates)

● Maximum theoretical wireless speed is
determined by wireless protocol, number of
streams, modulation and channel width

 9

802.11ad Data rates

 10

Marketing numbers

 11

Capacity
● Network device capacity is a measure of the

device structure’s bandwidth
– Example: RBwAPG-5HacT2HnD – has a structure

of one Gigabit Ethernet and one triple stream
802.11ac wireless and one dual stream 802.11n
wireless

1.3G + 0.3G +1G * 2 (for duplex) = 4.6Gbps
– Example: CRS309-1G-8S+IN – has a structure of

one Gigabit Ethernet and 8x 10Gbps SFP+ ports

(8x10G + 1x1G) * 2 (for duplex) = 162Gbps

 12

Layer1 wire-speed vs.
Layer2 wire-speed

 13

OSI Layer1
● Ethernet is a self-clocked digital protocol. The clock is

synchronized from preamble field that provides a
predictable 7 bytes long signal for Ethernet receiver,
followed by 1 byte Start-of-Frame Delimiter

● Ethernet specifies minimum idle period between
transmission of Ethernet frames known as the
interframe gap – the time it takes to send 12 bytes

 14

OSI Layers and wire-speed
● TCP ACK packet without any options takes

– 40B as Layer3 packet (padded to 46B to reach minimal
Ethernet payload size)

– 46+18 = 64B as Layer2 frame
– 64+20 = 84B as Layer1 signal on the wire
– 40/84 = 47.62% IP transmission efficiency

 15

OSI Layers and wire-speed
● UDP (and TCP) data packet takes

– 1500B as Layer3 packet
– 1500+18 = 1518B as Layer2 frame (1514B in Wireshark)

– 1518+20 = 1538B as Layer1 signal on the wire
– 1500/1538 = 97.53% IP transmission efficiency

 16

My wire-speed

● 500GiB/522’288’426 =1028B
as Layer3 packet

● 1028+18 = 1046B as Layer2
frame (1042B in Wireshark)

● 1046+20 = 1066B as Layer1
signal on the wire

● 1028/1066= 96.43%
IP transmission efficiency

Note: 1 GiB = 1024³ B
1 GB = 1000³ B

 17

Tricky questions about throughput

● What is 1Gbps really? Is it the same as
1Mb/ms for 1000ms? Is it the same as 1b/µs
for 1 million microsecond?

● Are there any differences between Fast
Ethernet and Gigabit Ethernet if you limit it to
60Mbps?

● Why can I get 22Mbps in my speedtest.net
results if I have queue set to 20Mbps?

 18

Lets scale up

● Ethernet networks in many ways is very similar
to highway system
– Lets replace Ethernet with highways
– Lets replace Ethernet frames with cars/trucks
– Lets replace Frame sizes with engine size
– Lets replace Queues with tunnels
– Lets replace Queues size with traffic jam size
– Lets replace seconds, with hours

 19

Tunnel specifications

● Tunnel have limited
ventilation

● It can handle 3600L/h
(engine displacement
Liters per hour)

● How would you control
that?

● 3600L/h = 60L/min
60L/min = 1L/s,
right?

 20

 Limitations of scaling

● What happens when truck arrives with a 12L
engine?

● So we can’t scale down to 1L/s, we need to
cope with inherit burstiness caused by
randomness of engine sizes

● Lets go with 60L/min

 21

Limitations of scaling
● What happens when for 2 minutes there are no

cars, and then row of cars with worth of 150L
arrive that were stuck behind lorry?

– Should all 150L be allowed to pass based on
previous 2 minutes?

– Should 120L be allowed to pass based on previous
1 minute? (and 30L queued)

– Should only 60L be allowed to pass based on only
this minute? (and 90L queued)

 22

Where does the measurement
start?

 23

Waiting time

● So we can’t scale down to 60L/min ether!
● We can’t go just with 3600L/h ether, a car that

will arrive with 3601st liter, will have to wait till
the end of the hour, so that next 3600L are
available.

● And again.. where that hour started exactly?

● Conclusion: Traffic is too chaotic and
unpredictable to apply any type of scaling
directly.

 24

Solution - Tokens
● We can place toll booth

before the tunnel it will
– generate tokens at any

given scale, even ms
– It will be able to

accumulate limited
number of tokens as a
buffer

– Cars will have to get
tokens to pass

– Buffer size should be taken into account when
when token rate is specified, to stay below limit
at any given time period

 25

HTB Algorithm

 26

“Real” network speed

 27

How does speedtest.net work

● speedtest.net will use up to four HTTP threads
● After the pre-test, if the connection speed is at least 4

megabits per second then speedtest.net will use four
threads. Otherwise, it will default to two

● One side sends an initial chunk of data, the
other side calculates the real-time speed of the
transfers and adjusts the chunk size along with
buffer size

● All samples are sorted by speed. The two fastest
results are removed and the bottom 1/4 which is then
left. Everything else is then averaged to get the result

*https://support.speedtest.net/hc/en-us/articles/203845400-How-does-
the-test-itself-work-How-is-the-result-calculated-

 28

TCP theoretical throughput

TCP throughput is limited by two windows
– Congestion window - sender side

● the amount of unacknowledged packets that may be
in transit

● it auto-tunes based on congestion control algorithms
● impacted by packet loss and delays

– Receive window - receiver side
● the amount of received data not processed yet by the

application
● it auto-tunes based or receive buffer size and its level

of fullness

 29

TCP theoretical throughput

● Sender and receiver continuously negotiate
common transmission window (for both
directions)

● Maximal single TCP stream throughput is
limited to not more than one full transmission
window within one round-trip time (RTT) period

● Middle devices, like routers, have only indirect
impact on congestion algorithm used - by
impacting RTT, jitter, packet loss

 30

TCP theoretical throughput

● If window size is 4`225`024 bytes, and RTT is 60ms
– (4`225`024*8)/60 = 563`336 bits/ms = 563Mbps

● If window size is 18`944 bytes, and RTT is 6ms

– (18`944*8)/6 = 25`259 bits/ms = 25,26Mbps

 31

TCP and multi-threading
● Multi-threading introduces out-of-order packets
● Usually TCP can handle out-of-order packets

within a single transmission window
● Depending on the congestion algorithm used,

out-of-order packets might be considered as
loss and introduce delays (increase calculated
RTT)

 32

Single TCP stream
and multi-threading

 33

Flow/Packet steering

● RouterOS uses Receive Flow/Packet steering
to assign incoming traffic to a specific CPU
core/thread, based on the hash value

● The hashing process can be:
– Hard-coded in the hardware
– Configurable in the hardware
– Implemented in the interface driver

● Receive flow/packet steering will try to keep
single TCP stream bound to single CPU
core/thread as long as possible

 34

RB3011UiAS block diagram

 35

What can and can’t we do...?

– We can’t choose the congestion control algorithm
– We can’t determine the congestion and the receive

window size of the endpoints
● We can change MSS
● We can minimize impact on RTT by reducing

packet processing time
● We can impact packet loss

 36

Routing forwarding

 37

Routing forwarding

 38

Routing forwarding

 39

Initial FastPath implementation

● FastPath is an interface driver extension, that
allows you to receive/process/send traffic
without unnecessary processing

● Interface driver can now talk directly to specific
RouterOS facilities - skipping others

● FastPath requirements
– Interface driver support
– FastPath should be allowed in configuration
– No configuration in specific facilities

 40

Routing forwarding FastPath

NO

 41

Routing forwarding FastPath

NO

 42

FastPath + Conntrack

● Implemented as “fasttrack-connection” action
for firewall filter/mangle that adds “Fasttracked”
flag to connection

● Packets from “Fasttracked” connections are
allowed to travel in FastPath

● Works only with IPv4/TCP and IPv4/UDP
● Some packets will still follow the regular path to

maintain timeouts in conntrack entries

 43

FastPath + Conntrack = FastTrack

 44

Routing forwarding FastPath

YES

 45

Fasttrack-connection
● “fasttrack-connection” action works similar to

“mark-connection” action
● “fasttrack-connection” rule is usually followed by

identical “accept” rule
● Most common Fasttrack implementations:

– Fasttrack if connection reach connection-
state=established and related

– Fasttrack to exclude some specific connections
from the queues

– Fasttrack all local connections

 46

Without Fasttrack
● Board:

RB2011UiAS-2HnD

● Configuration:
default Home AP

● Single TCP connection
throughput: 358Mbps

● CPU load:
100%

● Firewall CPU load:
44%

 47

With Fasttrack
● Board:

RB2011UiAS-2HnD

● Configuration:
default Home AP

● Single TCP connection
throughput: 890Mbps

● CPU load:
86%

● Firewall CPU load:
6%

 48

Full queues and
multi-core processing

● Packets are spending most part of the
processing time waiting in full queues

● In order not to waste CPU core cycles on
waiting, current core will just leave the packets
in the queue and take already processed
packets out of the same queue

● Queued packets can be taken out of the queue
randomly by the CPU core, that works on that
queue at the time

● In short: full queues can shuffle packet
assignments to CPU cores

 49

Empty queues and
multi-core processing

● In order not to waste CPU core cycles on
waiting, current core will just leave packets in
the queue and take already processed packets
out of the same queue

● In the case when the queue limit is not reached,
same packets will be left in and taken out of the
queue by the same CPU core, making this
process seamless

 50

Conclusions

● Queues don’t slow down single TCP streams if
they are not actually queuing packets (limits are
not reached)

● The complexity of the configuration has a
minimal impact on a single TCP stream (with
the exception of deep packet inspection and
queues), if the CPU core/thread doesn’t reach
100%

● Use configuration features like fastpath,
fasttrack, ip firewall raw, etc. to reduce overall
CPU load

 51

Testing from router to router

● Traffic generation/elimination takes at least the
same amount of CPU resources as simple
traffic forwarding

● The router needs to do both generate traffic and
then forward it to destination

● By default the traffic forwarding process has the
highest priority in routers (the reason why ping
through the router is better than to the router)

 52

Traffic-generator tool

● Traffic Generator can:
– Determine transfer rates, packet loss
– Detect out-of-order packets
– Collect latency and jitter values
– Inject and replay *.pcap file

● “Quick” mode
● Full Winbox support (coming soon)
● Doesn’t have TCP protocol support
● Scares people

 53

Bandwidth-test tool

● People love it!!!
● Until v6.44 was single threaded, now both UDP

and TCP tests support multi-threading
● In v6.44 we added warning message when

CPU load exceeds 90% (CLI only), to inform
that CPU is bottlenecking results, not the link

● Can do multistream tests (but how many should
you do?)

 54

Speed-test tool

● Introduced in RouterOS v6.44 (CLI only)
● It is a simple test tool for measuring ping, jitter,

TCP and UDP throughput from one MikroTik
device, to another

● It is based on bandwidth-test and ping tool, to
use it – the bandwidth-test server needs to be
accessible

● It automatically determines optimal number of
test streams based on the CPU core/thread
count on both devices

 55

Speed-test tool

 56

Questions!!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

