
Customizing Hotspot Customizing Hotspot

Deployments

NAT hooks

0 D chain=dstnat action=jump

jump-target=hotspot hotspot=from-client

1 I chain=hotspot action=jump

jump-target=pre-hotspot

� Use pre-hotspot chain to prevent Hotspot
from redirecting traffic to servlets

dstnat hotspot pre-hotspot

Redirect to

servlets

Custom

rules

Authenticated traffic

7 D chain=hotspot action=jump jump-target=

hs-auth protocol=tcp hotspot=auth

13 D chain=hs-auth action=redirect

to-ports=64874 protocol=tcp hotspot=http

� Even authenticated users have HTTP

redirected through servlet

Packet

from

logged-in

user

hs-auth

HTTP

Not HTTP

output chain

forward chain

What is affected?

� PCC + Hotspot

� Performance

� Authenticated traffic traverses 8 rules� Authenticated traffic traverses 8 rules

� Servlet proxying is slower than just

routing packets

� Vast majority of traffic seen on Hotspots

is HTTP and DNS

PCC + Hotspot

� Textbook examples expect traffic to

flow through router, not from it

� Usually router generated traffic is very � Usually router generated traffic is very

specific and shouldn’t be balanced

� On routers with normal and Hotspot

networks the ruleset would double in

size

Short circuit authenticated traffic

/ip firewall nat

add chain=pre-hotspot action=accept

dst-address-type=!local hotspot=auth

auth to Internet expedite

� Authenticated traffic now only takes three

rules to process

� Authenticated traffic is always in forward

chain when traversing the router

Packet from

Hotspot

interface

pre-hotspot

auth to Internet

unauth

expedite

process

Filter hooks

2 D chain=input action=jump

jump-target=hs-input

hotspot=from-client

3 I chain=hs-input action=jump

jump-target=pre-hs-inputjump-target=pre-hs-input

� Only input chain can be customized manually

� Forward chain is customized via dynamic

entries inserted via Walled Garden IP rules for

unauthenticated traffic

Servlet load

� Lots of applications use HTTP but are
not prepared to handle Hotspots

� We see an average of 14 redirects to
the login page before the user the login page before the user
interacts with it

� Malware can spawn HTTP requests at
a very high rate

� Servlet operation is rather expensive
as it listens to each request and issues
a response

Protecting the HTTP servlets

/ip firewall filter

add chain=pre-hs-input action=drop

connection-limit=5,32 protocol=tcp

dst-port=64872-64875

add chain=pre-hs-input action=drop add chain=pre-hs-input action=drop

connection-limit=100,24 protocol=tcp

dst-port=64872-64875

� Implement limits for hosts and networks

� More hosts mean more legitimate requests

� Can block legitimate clients – only use when

necessary

Rate limits: simple queues

Queue for client 1

Queue for client 2

Queue for client n

Queue on interface, shared by all bypassed and

unauthenticated users

Queue for client 2

Simple queue problems

� Simple queues don’t scale well

� Bypassed users:

� Shortcut to troubleshooting users� Shortcut to troubleshooting users

� Share bandwidth pool with unauth

� Require manually shifted simple

queues and static DHCP leases

� It’s not possible to rate limit the Hotspot

network as a whole

Solution: PCQ

� Scales well as sub-queues get picked

fast, is processed in parallel

� Unauthenticated users can be identified � Unauthenticated users can be identified

and rate limited per user

� Leaf can have max-limit aggregated

over sub-queues

Scenario 1: one profile/network

Mark auth

upload

Mark auth

download

PCQ

PCQ
download

Mark

unauth

upload

Mark

unauth

download

Receive

packet

PCQ

PCQ

PCQ

Send

packet

Scenario 1: marking traffic

� Prerouting for upload, postrouting for

download

� Unauthenticated traffic first, then fall

through to authenticated

Scenario 1: mangle export

/ip firewall mangle

add action=mark-packet chain=prerouting

hotspot=!auth in-interface=Hotspot new-

packet-mark=hs1-unauth-up passthrough=no

add action=mark-packet chain=postroutingadd action=mark-packet chain=postrouting

hotspot=!auth new-packet-mark=hs1-unauth-down

out-interface=Hotspot passthrough=no

add action=mark-packet chain=prerouting in-

interface=Hotspot new-packet-mark=hs1-up

passthrough=no

add action=mark-packet chain=postrouting new-

packet-mark=hs1-down out-interface=Hotspot

passthrough=no

Scenario 1: queue types

� Adjust limit and total-limit as required

for number of users, make sure not to

exceed available memory

Scenario 1: queue tree

� Download goes in global-out, upload

goes in global-in

� max-limit sets total network bandwidth

� Prioritizing is possible

Scenario 1: queue export

/queue type

add kind=pcq name=hs1-unauth-up pcq-classifier=dst-address

pcq-limit=50 pcq-rate=64000 pcq-total-limit=2000

add kind=pcq name=hs1-unauth-down pcq-classifier=src-address

pcq-limit=50 pcq-rate=64000 pcq-total-limit=2000

add kind=pcq name=hs1-up pcq-classifier=dst-address pcq-limit=50

pcq-rate=256000 pcq-total-limit=2000pcq-rate=256000 pcq-total-limit=2000

add kind=pcq name=hs1-down pcq-classifier=src-address

pcq-limit=50 pcq-rate=512000 pcq-total-limit=2000

/queue tree

add max-limit=1M name=hs1-unauth-up packet-mark=hs1-unauth-up

parent=global-in queue=hs1-unauth-up

add max-limit=1M name=hs1-unauth-down packet-mark=hs1-unauth-down

parent=global-out queue=hs1-unauth-down

add max-limit=5M name=hs1-down packet-mark=hs1-down

parent=global-out queue=hs1-down

add max-limit=5M name=hs1-up packet-mark=hs1-up parent=global-in

queue=hs1-up

Scenario 2: many profiles

Mark profile 1 up/down

Mark profile 2 up/down

Receive

packet

Send

packet

Mark profile 2 up/down

Mark profile n up/down

Mark unauth up/down

PCQ

Scenario 2: marking traffic

� Determine user profile based on firewall

address lists

� One rule for upload/download each

� Traffic not on any of the address lists

checked falls through to simple queues

Scenario 2: populating lists

� Address lists are
set via User
Profiles. AAA can
inherit via

� AAA can also set address list directly via
Mikrotik-Address-List (vendor 14988, id
19, type string)

inherit via
Mikrotik-Group
attribute

Adjusting PCQ limits

/queue type {

:local total([:len [/ip hot act find server=hs1]] * 50);

:local total ([:len [/ip fire addr find name=hs1-p1]] * 50);

set [find name=hs1-down] pcq-total-limit=$total;

set [find name=hs1-up] pcq-total-limit=$total;

};

� Defaults can only serve 40 users

� Scale packets/user down to save RAM

� Should probably not be run scheduled to

prevent RAM exhaustion if you don’t

have much memory

Scaling to thousands of users

� Turn off all unnecessary services

� Offload the necessary services:

� DHCP� DHCP

� DNS

� User Authentication

� Minimize what can’t be offloaded:

� Servlets / login pages

� Don’t skimp on hardware

Offloading network layout

Switch

Client

Client
DNS

Web

server

DHCP

server

Hotspot

router

Internet

Switch Client
DNS

server

Client

Client

AP

DHCP and DNS

� Use long DHCP leases to minimize

traffic, RFC1918 space is free

� Can be offloaded to a second RouterOS� Can be offloaded to a second RouterOS

device with interfaces on the network

� By default a Hotspot servlet intercepts

DNS, using a parallel DNS server could

affect functionality (IP to Hotspot DNS

name mapping must be perfect)

Web server

Client HotspotRequest � Login page can

be comprised of

many large

elementsClient Web serverRequest

Client HotspotCredentials

elements

� All variables the

servlet can set

can be passed

on via GET

Hotspot redirect to external

<html><head>

<meta http-equiv="refresh" content="0;

url=https://login.example.org/?mac=$(mac)">

<meta http-equiv="pragma" content="no-cache">

<meta http-equiv="expires" content="-1">

</head></html></head></html>

� Whitelist in walled garden IP for non-

local servers

� meta refreshes are implemented by

more clients than JavaScript

Switch and AP hardware

� Use switches that know spanning tree to

prevent loops

� Isolate clients on the edge to reduce � Isolate clients on the edge to reduce

broadcast related traffic

� In dense coverage areas add APs and

lower TX power rather than increase it

� Offer 5GHz SSIDs

