Customizing Hotspot
Deployments

NAT hooks

O D chain=dstnat action=jump

jump—target=hotspot hotspot=from-client
1 T chain=hotspot action=jump
jump—-target=pre-hotspot

dstnat ———- hotspot — - | pre-hotspot

l l

Redirect to Custom
servlets rules

Use pre-hotspot chain to prevent Hotspot
from redirecting traffic to servlets

Authenticated traffic

7 D chain=hotspot action=jump jump-target=
hs—auth protocol=tcp hotspot=auth

13 D chain=hs—auth action=redirect
to—-ports=64874 protocol=tcp hotspot=http

Even authenticated users have HTTP
redirected through servlet

Packet
from
logged-in
user

What is affected?

PCC + Hotspot

Performance
Authenticated traffic traverses 8 rules
Servlet proxying is slower than just
routing packets

Vast majority of traffic seen on Hotspots
is HTTP and DNS

PCC + Hotspot

Textbook examples expect traffic to
flow through router, not from it
Usually router generated traffic is very
specific and shouldn’t be balanced

On routers with normal and Hotspot
networks the ruleset would double in
size

Short circuit authenticated traffic

/ip firewall nat
add chain=pre-hotspot action=accept
dst—-address-type=!local hotspot=auth

auth to Internet

Authenticated traffic now only takes three
rules to process

Authenticated traffic is always in forward
chain when traversing the router

Packet from
Hotspot
interface

pre-hotspot

Filter hooks

2 D chain=input action=jump
jump—-target=hs-input
hotspot=from-client

3 I chain=hs-input action=jump
Jjump—target=pre—-hs—-input

Only input chain can be customized manually
Forward chain is customized via dynamic
entries inserted via Walled Garden IP rules for
unauthenticated traffic

Servlet load

Amazon offers new ...

e e Lots of applications use HTTP but are

e not prepared to handle Hotspots

oomes 165 We see an average of 14 redirects to
— the login page before the user

interacts with it

Malware can spawn HTTP requests at

a very high rate

Servlet operation is rather expensive

| __ as it listens to each request and issues

" huthenticste a response

Protecting the HTTP servlets

/ip firewall filter

add chain=pre-hs-input action=drop
connection-limit=5, 32 protocol=tcp
dst-port=64872-64875

add chain=pre-hs-input action=drop
connection-1imit=100,24 protocol=tcp
dst-port=64872-64875

Implement limits for hosts and networks
More hosts mean more legitimate requests
Can block legitimate clients — only use when
necessary

Rate limits: simple queues

Quevue for client 1

l

Quevue for client 2

l

Quevue for client n

l

Queue on interface, shared by all bypassed and
unauthenticated users

Simple queue problems

Simple queues don't scale well
Bypassed users:
Shortcut to troubleshooting users
Share bandwidth pool with unauth
Require manually shifted simple
queues and static DHCP leases
It's not possible to rate limit the Hotspot
network as a whole

Solution: PCQ

Scales well as sub-queues get picked
fast, is processed in parallel
Unauthenticated users can be identified
and rate limited per user

Leaf can have max-limit aggregated
over sub-queues

Scenario 1: one profile/network

upload
Mark auth

Receive Send
packet packet

“

Scenario 1: marking traffic

B | Firewneall
Fiter Rules MAT Mandle | Service Ports Conkections Address Listz Layer? Protocols

e == & |3 (O | 00 ResetCounterz | 00 Reset All Counters

Action Chain In. Interface [Out. Interface |Hotzpot | Mew Packet Mark, | Passthrough [Bytes Fackets
1] 4 mark packet prerouting Hotzpot lauth hz1-unauth-up o 1219.0 KiB g 838
1 # mark, packet postrouting Huotzpot lauth hs1-unauth-down no 10.8 MiB 11 250
2 # mark packet prerouting Hotzpot hs1-up no 239 MiB 23165
3 A mark packet postrouting Hatzpat hiz1-down i 17.7 MIiB 211597

Prerouting for upload, postrouting for
download

Unauthenticated traffic first, then fall
through to authenticated

Scenario 1: mangle export

/ip firewall mangle

add action=mark-packet chain=prerouting
hotspot=!auth in-interface=Hotspot new-
packet-mark=hsl-unauth-up passthrough=no

add action=mark-packet chain=postrouting
hotspot=!auth new-packet—-mark=hsl-unauth-down
out-interface=Hotspot passthrough=no

add action=mark-packet chain=prerouting in-
interface=Hotspot new-packet-mark=hsl-up
passthrough=no

add action=mark-packet chain=postrouting new-
packet-mark=hsl-down out-interface=Hotspot
passthrough=no

Scenario 1: queue types

U Queue List

Simple Quewes Interface Queues Queue Tree Hueue Types

gp =

Type Mame + | containg * | hs
Type Mame K.ind H ate Lirnit Total Lirit | Clazzifier
biz1-down pCq a1 2k alll 2000 Src. Address
hiz1-unauth-down pCq Bk alll 2000 Src. Address
hiz1-unauth-up pCq Bk alll 2000 Dzt Address
hiz1-up pCq 2Rkl alll 2000 Dzt Address

Adjust limit and total-limit as required
for number of users, make sure not to
exceed available memory

Scenario 1: queue tree

P Queue List
Simple Queues Interface Queues Hueue Tree | Queue Types

e == & 8 (O T |00 ResetCounterz || 00 Reset All Counters

M arne Farent Facket b arks Lueue Type b aw Limnit [bitzz] | Bytes Fackets

2 hzl-down global-out hiz1-doown hz1-dowr Ak A5 MIB 5 323
£ hzl-unauth-down global-out hz1-unauth-down ha1-unauth-down 1M 2080.0 KiB 4 B2
i3 hz1-unauth-up global-in bz -unauth-up hiz1-unauth-up 1 11330 KB g 421
i3 hs1-up global-in hz1-up hiz1-up Ak 3963.8 KiB 4712

Download goes in global-out, upload
goes in global-in

max-limit sets total network bandwidth
Prioritizing is possible

Scenario 1: queue export

/queue type
add kind=pcq name=hsl-unauth-up pcg-classifier=dst-address

pcg-limit=50 pcqg-rate=64000 pcg-total-1imit=2000

add kind=pcq name=hsl-unauth-down pcqg-classifier=src-address
pcg-l1limit=50 pcqg-rate=64000 pcg-total-1imit=2000

add kind=pcq name=hsl-up pcqg-classifier=dst-address pcq-limit=50
pcg-rate=256000 pcg-total-1imit=2000

add kind=pcq name=hsl-down pcqg-classifier=src-—address
pcg-limit=50 pcqg-rate=512000 pcg-total-1limit=2000

/queue tree

add max-limit=1M name=hsl-unauth-up packet-mark=hsl-unauth-up
parent=global-in queue=hsl-unauth-up

add max-limit=1M name=hsl-unauth-down packet-mark=hsl-unauth-down
parent=global-out queue=hsl-unauth-down

add max-l1imit=5M name=hsl-down packet-mark=hsl-down
parent=global-out queue=hsl-down

add max-l1imit=5M name=hsl-up packet-mark=hsl-up parent=global-in
queue=hsl-up

Scenario 2: many profiles

Mark profile 1 up/down

Mark profile 2 up/down

Mark profile n up/down

Scenario 2: marking traffic

B ' Firevwall
Filter Fules MAT Mangle | Service Portz Conkections Address Lists Layer7 Protocols

g == | ¥ O | |00 ResetCounters || 00 Reset All Counters

B Action Chain In. Interface | Out. Interface | Src. Address List |Dst. Address List |Haokzpat Mew Packet Mark | Passthrough
1] # mark packet prerouting Hotzpot hz1-pl hz1-pl-up no
1 A mark packet postrouting Hatzpot hs=1-p1 hiz1-p1 -down no
2 # mark packet prerouting Hotzpot hz1-p hz1-p2-up hio
3 A mark packet postrouting Hatzpot hs1-p2 hiz1-p-down no
4 A mark packet prerouting Hatzpat LaLith hiz1-unauth-up no
4] # mark packet postrouting Hatzpot Lauth hz1-unauth-down no

Determine user profile based on firewall
address lists

One rule for upload/download each
Traffic not on any of the address lists
checked falls through to simple queues

Scenario 2: populating lists

P Address lists are
ame: | ance -

| = set via User

ession Timeout - Copy "

S - Profiles. AAA can
ettt (T - inherit via

- Mikrotik-Group
Rate Lirnit [r2/t=]; - .

attribute

AAA can also set address list directly via
Mikrotik-Address-List (vendor 14988, id

19, type string)

Adjusting PCQ limits

/queue type {
:local total([:len [/ip hot act find server=hsl]] * 50);
:local total ([:len [/ip fire addr find name=hsl-pl]] * 50);
set [find name=hsl-down] pcg-total-limit=$total;
set [find name=hsl-up] pcg-total-limit=$total;

};

Defaults can only serve 40 users
Scale packets/user down to save RAM
Should probably not be run scheduled to

prevent RAM exhaustion if you don't
have much memory

Scaling to thousands of users

Turn off all unnecessary services

Offload the necessary services:

DHCP

DNS

User Authentication

Minimize what can’t be offloaded:
Servlets [login pages

Don’t skimp on hardware

Offloading network layout

Client

Client

Internet

Client

Hotspot

Client
router

DHCP and DNS

Use long DHCP leases to minimize
traffic, RFC1918 space is free

Can be offloaded to a second RouterOS
device with interfaces on the network
By default a Hotspot servlet intercepts
DNS, using a parallel DNS server could
affect functionality (IP to Hotspot DNS
name mapping must be perfect)

Web server

Client Request Hotspot Login page can
be comprised of
many large

Client Request Web server elements

. All variables the
»o@“@q servlet can set

Client Credentials Hotspot can be paSSEd
onvia GET

Hotspot redirect to external

<html><head>

<meta http-equiv="refresh" content="0;
url=https://login.example.org/?mac=$ (mac) ">

<meta http-equiv='"pragma" content="no-cache">

<meta http-equiv="expires" content="-1">

</head></html>

Whitelist in walled garden IP for non-
local servers

meta refreshes are implemented by
more clients than JavaScript

Switch and AP hardware

Use switches that know spanning tree to
orevent loops

solate clients on the edge to reduce
oroadcast related traffic

n dense coverage areas add APs and

ower TX power rather than increase it
Offer gGHz SSIDs

